
APS Homework 2: Greedy Method
Optional Challenge Problems

Problem 1: Clock Divisibility

Your friend Bob is a somewhat weird guy. He has two obsessions in his life: his
digital clock and divisibility. His digital clock displays the time in the 24-hour format (i.e.,
the first minute of a day is 00:00, and the last minute of a day is 23:59), and one of Bob’s
favorite hobbies is to pick a random number and just watch his clock until all 4 1 ≤ x ≤ 9
digits of the display are divisible by x (assume 0 is divisible by every number).

Given an arbitrary number x (between 1 and 9) and an arbitrary current time y in the
24-hour format described above, how many minutes will Bob have to wait until the clock
displays a time such that all 4 digits of the time are perfectly divisible by x? For example, if
x is 3 and y is 03:23, the answer is 7 minutes, because 7 minutes after y would be 03:30, and
all 4 digits of this resulting time are divisible by x.

Problem 1a: Given an integer x (between 1 and 9) and a current time y (in the 24-hour
format), describe a greedy algorithm for computing how long Bob has to wait until the
clock displays a time such that all 4 digits are divisible by x.

Problem 1b: Prove that the algorithm you provided in Problem 1a is correct for any integer

 and any time y.1 ≤ x ≤ 9

Problem 2: Wizard’s Chess

A chess board is an grid. One specific chess piece, the knight, moves in “L” 8 × 8
shapes: it moves 2 spaces in one direction and 1 space in a perpendicular direction (where
directions are North, South, East, and West). In the completely true documentary Harry
Potter and the Sorcerer’s Stone, the protagonists Harry Potter, Ron Weasley, and Hermione
Granger must work together to win a game of life-size Wizard’s Chess. Ron chooses to be
the knight. Towards the end of the game, Ron sees where he must go in order for his
friends to win the game.

Let (x0, y0) denote Ron’s current position, and let (x1, y1) denote the final position
where Ron must go, where (0,0) is the bottom-left corner of the board, (7,0) is the
bottom-right, (0,7) is the top-left, and (7,7) is the top-right. What path can Ron take to go
from (x0, y0) to (x1, y1) in the least number of steps?

Problem 2a: Describe a greedy algorithm to move Ron from (x0, y0) to (x1, y1) in the least
number of steps.

Problem 2b: Prove that the algorithm you provided in Problem 2a is correct for any arbitrary
points (x0, y0) and (x1, y1).

Problem 3: Rearranging the Letters of a String

Remember your friend Bob from before? It turns out that he’s even weirder than
you thought. For some reason, in addition to watching his digital clock all day, Bob loves to
rearrange the letters of strings to make them lexicographically smaller. For example, the
string aaaba is lexicographically (i.e., alphabetically) smaller than the string abaaa.

Given a string x and an integer k, Bob is allowed to rearrange up to k letters in x, and
he wants an algorithm that will give him the lexicographically smallest string possible. For
example, if x is ebadc and k is 3, Bob can do the following:

1. Cut out indices 0 (e), 2 (a), and 4 (c), resulting in _b_d_
2. Put the a in index 0, the c in index 2, and the e in index 4, resulting in abcde

Problem 3a: Describe a greedy algorithm where, given a string x and an integer k, you can
cut out k letters from x and put them back into the the now-open slots to yield the
lexicographically smallest possible resulting string.

Problem 3b: Prove that the algorithm you provided in Problem 3a is correct for any arbitrary
string x and any arbitrary integer .x|1 < k ≤ |

